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Beamforming algorithms - beamformers
Jørgen Grythe, Norsonic AS, Oslo, Norway

Abstract—Beamforming is the name given to a wide variety
of array processing algorithms that focus or steer the array
in a particular direction. Beamforming techniques are used to
enhance directivity, and to aim the focus of the array without
having to change it physically. To produce a common output
the signals from the individual sensors are combined according
to a certain algorithm.

Index Terms—Beamforming, delay-and-sum, minimum vari-
ance

I. DELAY-AND-SUM BEAMFORMING

ONE of the most common and robust beamforming algo-
rithms is the conventional beamformer, also known as

the Bartlett beamformer, or delay-and-sum (DAS) beamform-
ing. The DAS beamformer applies a delay and an amplitude
weight to the output of each sensor, and then sums the re-
sulting signals. The delays are chosen to maximize the array’s
sensitivity to incoming waves from a particular direction. By
adjusting the delays, the array’s look-direction can be steered
towards the source, and the waveforms captured by the indi-
vidual sensors add constructively. This means that signals at
particular angles experience constructive interference, while
others experience destructive interference.
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Fig. 1. The wavefield is arriving at individual microphones located at different
positions at different times. Summing the signals directly distorts the signal,
whereas by delaying the signals the waveforms captured by the individual
sensors add constructively.

Consider an array consisting of M sensors that are located
at different positions in space ~xm = [xm, ym, zm] that mea-
sures a wavefront f (~x, t). The waveform spatially sampled by
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the mth sensor is ym(t) = f (~xm, t). The DAS beamformer
consists of applying a delay ∆m and an amplitude weight wm
to the output of each sensor, and then summing the resulting
signals as displayed in Fig. 2.
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Fig. 2. Delay-and-sum (DAS) beamforming, also known as the conventional
(or Bartlett) beamformer

The delays are chosen to maximize the array’s sensitivity
to waves propagating from a particular direction. By adjusting
the delays, the array’s direction of look can be steered towards
the source, and the waveforms captured by the individual
sensors add constructively. This operation is sometimes called
stacking. Weighting the different sensors of the array dif-
ferently may be seen as a gain factor for the individual
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sensors, and enhances the shape and reduces sidelobe levels
of the listening beam. As opposed to adaptive methods,
the sensor weights for the DAS beamformer are chosen in
advance and independently of the received waveform. The
DAS beamformer’s output in the time domain is then

z(t) =
M−1

∑
m=0

wm · ym(t− ∆m) (1)

The basic idea in beamforming for is then to use the set
of delays to steer the array to different directions or points in
a scanning plane. When the steering direction coincides with
a source, the maximum output power will be observed. By
interpolating the measured output power from all the scanning
points, it is possible to colour the spatial power (power across
the scanning plane) and make an acoustic image.
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Fig. 3. The basic idea behind acoustic camera is to steer the listening
direction of the array on different points in a scanning plane, measure the
power from each point, and interpolate the values to create an image.

Defining the set of listening points in the scanning plane
as ~xs = [xs, ys, zs], the set of delays ∆m to steer the beam
to a specific point are then calculated as

∆m =
|~xs −~xm|

c
=

√
(xs − xm)2 + (ys − ym)2 + (zs − zm)2

c
(2)

where c is the speed of sound. Remember that the DAS
equation given in (1) is for a single point only, so calculation
of time delays, delaying signals and summing of signals from
all the different sensors has to be done for all the scanning
points.

II. ARRAY OUTPUT FOR DELAY-AND-SUM BEAMFORMER

Now say we want to characterize the array sensitivity to a
single frequency wave from an arbitrary incidence angle when
using the DAS beamformer. That is we want to characterize
the array itself when scanning over all incidence angles rather
than only points in a plane. First consider the input to a single
sensor as

ym(t) = ej(ωt−~k·~xm) (3)

where ω = 2π f is the frequency of the input signal with
frequency f . The wavenumber vector (or wave vector)~k is the
propagation vector giving both the magnitude and direction
of arrival of the incident plane wave. As before ~xm is the
position in space of the receiving sensor. By using the same
input signal as in (3), the delayed signal may now be stated
in terms of a phase shift rather than time delay as

ym(t− ∆m) = ym(t) · e−jω∆m (4)

Remember now that the signal ym(t) is the received signal
from individual sensors and will be different for different
sensors, as seen on the top left of Fig. 1, and e−jω∆m

represents the phase delay assosiated with the signal at the
mth microphone. The DAS beamformer output may again be
stated as in (1)

z(t) =
M−1

∑
m=0

wm · ym(t) · e−jω∆m (5)

If we now include these phase delays in the received signal
vector Y = ym(t) · e−jω∆m , we may write (5) in vector notation
as

z = wHY (6)

where Y is the vector of the received signal from each
sensor with its associated phase delay, w is the weighting
vector and H denotes the complex conjungate transpose. By
using the vector notation given in (6), and assuming we have
already steered the array to the desired direction, we can
calculate the power, or the variance, of the output signal as

P(z) = σ2 = E{|z|2} = wH Rw (7)

where R = E{YY H} is the correlation matrix of the
incoming signal.

In (5) the phase delays associated with each individual
sensor e−jω∆m is the so called steering vector e, and governs
how we want to stear the beam of our array. Now suppose
we want to measure the output power as a function of
scanning angle or rather as a function of steering vector.
This is termed the steered response and is the power of the
beamformer output in the frequency domain. This array output
power spectral density may then be expressed by using the
correlation matrix R and the steering vector e as

P(e) = eH Re (8)

In essence, to calculate the spatial spectrum of the DAS
beamformer for a specific array, steer the array to the desired
direction and use (7) to calculate the output power. Or a
different and equal approach, is to weight the signals on input,
and use (8) to calculate the power for an arbitrary scanning
angle.
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III. MINIMUM VARIANCE BEAMFORMING

For the DAS beamformer the weighting of elements is
predefined and stays the same regardless of input. A different
approach would be to change the weighting of elements
based on the input signals, or better yet, to adapt the
weighting of elements to the input. A different algorithm that
uses such an approach is the so called minimum variance dis-
tortionless response (MVDR) algorithm, or minimum variance
(MV) for short. The basic idea, and the basis for the name, is
to minimize the power or variance P(z) of the output signal
z(t), all while the desired signal in our listening direction is
not distorted. That means we want to force the beampattern
of our array to have unity gain in our listening direction, while
we minimize the impact from all other sources.

min P(z)

subject to wHe = 1 (9)

The solution for optimum weights to the above restrictions
is given as

w =
R−1e

eR−1e
(10)

The optimum weight vector now depends both on the input
signals given by the spatial correlation matrix, and also on the
steering vector which gives the angle of the listening direction
of the array. As various directions are scanned, the optimal
weights will change and adapt to the signals and noise in the
observations.
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Fig. 4. Beampattern of DAS and MV when steered to -10 degrees. The input
signal consists of three sources arriving at incidence angles -10, 5 and 30
degrees

In Fig. 4 we have three input signals arriving at -10, 5
and 30 degrees respectively, with the array being steered
to the incidence angle of the first source, so the array will

have its mainlobe pointed in this direction. By looking at
the beampattern of the DAS beamformer shown on top in
Fig. 4, it is clear how the obtained signal will be distorted
by signals arriving at an incidence angle that corresponds
to the location of one of the side lobes of the array. Now
focusing on the MV beampattern on the bottom, we see how
the beampattern is forced to have minimum energy at arriving
angles corresponding to other sources. This is what makes
the MV algorithm so great, we can diminish the impact of
interfering sources while still having maximum energy in our
listening direction.

The optimal weights in (10) will give the corresponding
spatial spectrum of the minimum variance beamformer as

P(e) =
1

eH R−1e
(11)

By using the same input signals as in Fig. 4, we can
calculate the steered response for both the DAS and MV
algorithm as seen in Fig. 5. Clearly the MV algorithm has
a strong increase in resolution over the DAS beamformer.
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Fig. 5. Steered response of the DAS and MV algorithm. The input signal
consists of three sources arriving at incidence angles -10, 5 and 30 degrees
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APPENDIX

Say we want to characterize the array sensitivity to a single
frequency wave from an arbitrary incidence angle when using
the delay-and-sum (DAS) beamformer. The incidence angle in
spherical coordinates is then given as the elevation θ, which
is the normal incidence angle, and azimuth φ which is the
angle in the XY plane as illustrated in Fig. 6.
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Fig. 6. Spherical coordinate system shown with elevation θ = 40, and
azimuth φ = 140.

First consider the input to a single sensor as

ym(t) = ej(ω◦t−~k◦ ·~xm) (12)

where ω = 2π f is the frequency of the input signal with
frequency f . The wavenumber vector (or wave vector) ~k =
[kx, ky, kz] is the propagation vector giving both the magnitude
and direction of arrival of the incident plane wave. The ◦ over
~k◦ and ω◦ is to denote that the wave has a specific frequency
ω◦, and a specific direction given by the wave vector~k◦, which
may be different from the direction~k which the array is steered
to. As before ~xm = [xm, ym, zm] is the position in space of
the receiving sensor. By using the same input signal as in
(12), the delayed signal may be stated as

ym(t− ∆m) = ej(ω◦(t−∆m)−~k◦ ·~xm)

= ej(ω◦t−~k◦ ·~xm) · e−jω◦∆m

= ym(t) · e−jω◦∆m (13)

Remember now that the signal ym(t) is the received signal
from individual sensors and will be different for different
sensors, as seen on the top left of Fig. 1, and e−jω◦∆m

represents the phase delay assosiated with the signal at the
mth microphone. The DAS beamformer output may again be
stated as in (1) as

z(t) =
M−1

∑
m=0

wm · ym(t) · e−jω◦∆m (14)

Now we want to choose the set of delays as used on the
top right of Fig. 1 such that the phase shifts steer the beam’s

listening direction to the direction of the vector ~k which can
be different from the waves propagation direction~k◦. That is,
the delays are chosen as

∆m = −
~k
ω◦
·~xm (15)

and the total response from (14) may be calculated as

z(t) =
M−1

∑
m=0

wm · ym(t) · e−jω◦(− ~k
ω◦ ·~xm)

=
M−1

∑
m=0

wm · ym(t) · ej~k·~xm (16)

where ej~k·~xm is the phase delay associated with each
individual sensor. Now to characterise the output of the DAS
beamformer further, we write ym(t) as in (12) and insert it
into (16).

z(t) =
M−1

∑
m=0

wm · ym(t) · ej~k·~xm

=
M−1

∑
m=0

wm · ej(ω◦t−~k◦ ·~xm) · ej~k·~xm ·

=
M−1

∑
m=0

wmej(~k−~k◦)·~xm · ejωt

= W
(
~k−~k◦

)
· ejω◦t (17)

where

W(~k) =
M−1

∑
m=0

wmej~k·~xm (18)

is the so called array pattern or array factor which is
a function of the position of the sensors in the array and
the weights used. In the case of uniform shading where
the weights are all equal, the array pattern depends only
on the array geometry. The function W

(
~k−~k◦

)
given in

(17) is called the beampattern of the array. We see how
the beampattern describes how a monochromatic signal ejω◦t

propagating in a direction given by ~k◦ with a frequency ω◦

is attenuated by a DAS beamformer steered towards the
direction~k. The beampattern will have maximum output when
the steering direction coincides with the wave’s direction of
propagation, that is we set ~k =~k◦.

Returning to the notation given in (16), if we now include the
phase delays in the received signal vector Y = ym(t) · ej~k·~xm ,
we may write (16) in vector notation as

z(t) =
M−1

∑
m=0

wm ·
(

ym(t) · ej~k·~xm
)
= wHY (19)

where Y is the Mx1 vector of the received signal from each
sensor with its associated phase delay



TECHNICAL NOTE 5

Y =


y0(t) · ej~k~x0

y1(t) · ej~k~x1

...

yM−1(t) · ej~k~xM−1

 (20)

w is the Mx1 vector of weights for individual sensors

w =


w0
w1
...

wM−1

 (21)

and H denotes the complex conjungate transpose. By
using the vector notation given in (19), and assuming we
have already steered the array to the desired direction, we
can calculate the power, or the variance, of the output signal
as

P(z(t)) = σ2 = E{|z(t)|2}
= E{(wHY)(wHY)H}
= E{wHYY Hw}
= wHE{YY H}w
= wH Rw (22)

The above expression gives the power of the beamformer’s
output in the steered direction, where R = E{YY H} is
the correlation matrix of the data. Now suppose we want to
measure the output power as a function of steering directions,
or scanning angles. In (16) the phase delays associated with
each individual sensor ej~k·~xm is the so called steering vector,
denoted as e, and governs how we want to stear the beam
of our array

e = ej~k·~xm =


ej~k·~x0

ej~k·~x1

...

ej~k·~xM−1

 (23)

For a wave propagating in spherical coordinates, the wave
vector is related to the Cartesian coordinates by simple
trigonometric formulas

kx = k sin θ cos φ

ky = k sin θ sin φ

kz = k cos θ (24)

where the x-component of the wave vector, kx, determines
the rate of change of the phase of a propagating plane
wave in the x-direction. The same definitions apply for the
y- and z-directions. The wavenumber k is equal to 2π/λ or
2πc/ f . The steering vector then depends on the frequency
and propagation direction of the incoming plane wave, and
can be expressed in terms of wavelength λ, elevation θ
and azimuth φ. Usually planar 2D arrays with the elements

positioned in the same plane will be used, so that the z-
coordinate of the sensors will be equal to zero. This means
that the dependence on z and kz may be omitted, and the
steering vector can be written as

e = ej~k~xm =


ej 2π

λ (sin θ cos φ·x0+sin θ sin φ·y0)

ej 2π
λ (sin θ cos φ·x1+sin θ sin φ·y1)

...

ej 2π
λ (sin θ cos φ·xM−1+sin θ sin φ·yM−1)

 (25)

In (22) we already assumed the array was steered to the
correct direction before calculating the power. If we now want
to calculate the energy for an arbitrary direction instead, we
must realize that since the received signal vector Y in (22)
have phase delays included, this must mean that R also is
a function of the steering vector e, that is R(e) = eH Re.
Now suppose we want to measure the output power as a
function of scanning angle, or rather as a function of steering
vector. Calculating the output power as a function of steering
vector is termed the steered response and is the power of the
beamformer output in the frequency domain. This array output
power spectral density may then be expressed by using the
correlation matrix and the steering vector as

P(e) = wH R(e)w

= wH(eH Re)w (26)

For a uniform array where all sensors have equal weight,
the above expression reduces to

P(e) = eH Re (27)

In essence to calculate the spatial spectrum of the DAS
beamformer for a specific array, use (26) to calculate the
output power, or (27) for a uniformely weighted array. The
calculation will be performed for each steering vector, where
each steering vector corresponds to exactly one pair of θ, φ
scanning angles.


